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ABSTRACT

Motivation: Recent transcriptome studies have revealed that total

transcript numbers vary by cell type and condition; therefore, the

statistical assumptions for single-cell transcriptome studies must be

revisited. SAMstrt is an extension code for SAMseq, which is a stat-

istical method for differential expression, to enable spike-in normaliza-

tion and statistical testing based on the estimated absolute number of

transcripts per cell for single-cell RNA-seq methods.

Availability and Implementation: SAMstrt is implemented on R and

available in github (https://github.com/shka/R-SAMstrt).

Contact: shintaro.katayama@ki.se

Supplementary Information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Unbiased molecular measurements are required to form precise

hypotheses on molecular mechanisms, and measurements at

single-cell resolution can give detailed snapshots of heteroge-

neous cell cultures or tissues. Recently described single-cell

mRNA sequencing technology is one promising method for

such purposes (Hashimshony et al., 2012; Islam et al., 2012;

Ramsköld et al., 2012; Tang et al., 2011). However, the statistical

assumptions in the traditional tests for differential expression are

not necessarily applicable, as the total mRNA molecules per cell

could be different by cell types (Dobson et al., 2004; Islam et al.,

2011; Lovén et al., 2012), and sensitivity over the experiments is

less consistent than in the other methods that use large amounts

of input mRNA. One possible solution is the addition of a

known number of spike-in control RNA molecules to each cell

lysate, which can be used to normalize and convert read counts

to (estimated) molecule numbers. In the present study, we used

the single-cell tagged reverse transcription (STRT) method

(Islam et al., 2012) to investigate key issues for statistical tests,

in several control experiments, and then implement and demon-

strate a new concept for differential expression test on single-cell

transcriptome profiles.

2 ISSUES FOR STATISTICAL TESTING IN
SINGLE CELLS

There are two challenges to be aware of for the statistics of

STRT single-cell transcriptome profiling. The first issue is the

variation of sequencing depth and aligned read counts. STRT

sequencing of mouse embryonic stem cells (mES) and fibro-

blasts (MEF) in the earlier study (Islam et al., 2011) had

about 100-fold differences in the sequencing depths

(Fig. 1A). In our 24-plexed sequencing of 50 pg pooled

human brain total RNA, there was only 10-fold difference

in the depths (Fig. 1A). Also mES cells tended to have less

aligned read numbers in comparison with MEFs (Fig. 1A), as

the mES cells express less mRNA (Islam et al., 2011). Even

when we consider the existence of true biological variation in

the cells by transcriptional bursting (Chubb et al., 2006; Raj

et al., 2006) or heterogeneity of the cultured cells, it is obvious

that variation of the sequencing depth is a contributing cause

for the variation of sensitivity; e.g. experiments at shallow

sequencing depth could detect a smaller number of features

(Fig. 1A). Equalization of RNA or non-amplified cDNA

amounts before sequencing was not feasible, as barcoded

cDNAs synthesized from each cell were pooled before ampli-

fication without any control of molecular concentration (Islam

et al., 2012).
The second issue to consider is the process and underlying

hypothesis for normalization. Normalization is required to cor-

rect bias coming from technical sources. For statistical tests of

differential expression in sequencing-based profiles, the most

recent proposed normalization procedures include rescaling

by estimated sequencing depth (Anders and Huber, 2010;

Bullard et al., 2010; Li and Tibshirani, 2011; Robinson and

Oshlack, 2010), and those are performed under the assumption

that the majority of co-expressing genes are not differentially

expressed between two samples. This hypothesis is relevant in

cases where we use equivalent amount of RNAs, cDNAs or

sequence templates as for usual RNA-seq, but it would be

inappropriate for single-cell transcriptome sequencing where

the underlying biological heterogeneity may include heterogen-

eity of the total transcript count between cells.
To handle these two issues, we have developed a method for

robust statistics that has tolerance for large sequencing depth

variations and that can also perform normalization that con-

siders differences of total transcript counts per cell.*To whom correspondence should be addressed.
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3 CONCEPT AND VALIDATION

We adapted SAMseq (Li and Tibshirani, 2011) to test for differ-

ential expression in STRT single-cell transcriptome profiles. The

framework of this method is Poisson resampling and non-

parametric statistics, which yield robust statistics even in huge

variation of sequencing depths, as the authors demonstrated for

SAMseq. We developed this further and modified the sequencing

depth estimation by assuming equivalent spike-in-molecules/cell

in each experimental set. One concern is the abundance of the

spike-in molecules among the sequenced reads. Although it

would vary by target cell types (e.g. large cells may have more

mRNA molecules), the amount of the spike-in molecules is usu-

ally at most 1% of total poly-Aþ molecules in each sequencing

reaction, and also counts of the control molecules fluctuate

because of technical variation. To estimate the feasibility of

this approach, we separated the 24-plex trial sequencing results

into two groups randomly and then tested the differential expres-

sion by both sequencing depth estimations. As this is repetitive

sequencing of the pooled RNA, ‘no difference’ is the ideal result;

however, a few features would be recognized as differentially

expressed owing to the technical variation. Actually, 11 features

were unexpectedly recognized as differentially expressed by the

spike-in-based normalization, whereas six by the original

(Fig. 1B; the values are median in the repetitive trials; 46.44

and 76.01 features in average, respectively; there were 25 665

defined and 15 192 detected features in total of the trial results).

As there were no significant differences between two methods

(P¼ 0.2394 by Welch’s two sample t-test for the distributions)

and both methods kept a few false discovery in the trials (e.g.

Fig. 1B and C), median representation of the technical replicas

gives an impression of differential expression between the two

groups, when there were no significant differences because of

broad and random variations over the replicas. Thus, we con-

clude that the spike-in-based normalization works when given

enough sequence spike-in reads; there were 5000 spike-in reads

on average in the trial results.

We then confirmed our approach by comparison of actual

cells as well, between the mES and the MEF. As mES cells

express less mRNA than MEF (Islam et al., 2011), many genes

in mES cells should yield also less transcripts/cell in comparison

with MEF cells (right lower diagonals of Fig. 1D and F)

However, the original SAMseq judged that there were 598

highly expressed features in mES cells significantly (FDR 5
0.01%; Fig. 1D). One possible reason is overestimation of

mES expression levels by the original method (Li et al., 2011),

Fig. 1. (A) Aligned reads and the detected features in 45 mES, 44 MEF

and 24 of 50 pg human brain total RNAs (50pg) by STRT. The features

are known genes, repeat elements and spike-in molecules; there were

25 286 features for mouse and 25 665 features for human. (B) False dis-

covery features in 100 trials between SAMseq and SAMstrt. In each trial,

24 of 50 pg human brain total RNAs were separated randomly into two

groups, and then each method compared the two groups. Although

number of differentially expressed features should be zero in all trials if

no technical variations, the false discovery features showed statistical

difference (FDR51%). (C) Comparison of transcripts per 50 pg

human brain total RNAs per feature, between the former 12 samples

and the latter 12 samples. This is one representative comparison in the

trials for panel B, and there were no significantly different features by the

proposed SAMstrt (FDR50.01%). Gray color gradation denotes density

of features in the scatter plot, and expression level of each feature is

represented by median. Dashed diagonal line denotes equivalent expres-

sion between two samples. (D) Comparisons of normalized expression

levels per cell per feature, between 45 mES and 44 MEF cells, by

SAMseq. Usage of the gray color gradation and the dashed diagonal

line are same with the panel C. Points are differentially expressed features

Fig. 1. Continued

(FDR50.01%). (E) Sum of the normalized expression values of all fea-

tures by samples and the comparison by the methods. (F) Comparison of

transcripts per cell per feature, between 45 mES and 44 MEF cells, by

SAMstrt. Usage of the gray color gradation, the dashed diagonal line,

and the points are same with the panel D. SAMseq added uniform

random numbers between 0 and 0.1 to all values to avoid ties (Li and

Tibshirani, 2011), therefore, features which are the most bottom expres-

sion level in the panel C, D and F are no expression, or less than detection

limit. The normalized expression values by SAMstrt at the panel C and F

are moreover estimated transcripts per cell based on the initial concen-

tration of the spike-in molecules
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which is normalization by putative stably expressed endogenous
features. Although the mES cells with less mRNA had fewer
aligned reads and fewer detected features (Fig. 1A), actually
the original method increased the estimated mRNA content of

mES cells (Fig. 1E) because the original normalization assumes
that the majority of co-expressing genes are not differentially
expressed. However, it contradicts our validated observations

(Islam et al., 2011). In contrast, the proposed SAMstrt judged
that there were only 15 highly expressed features in mES cells,
whereas there were 8441 less expressed features (Fig. 1F).

However, the sum of normalized reads was less in mES cells
than MEF (Fig. 1E), as we had observed (Islam et al., 2011).
Moreover, well-known ES cell markers, e.g. Pou5f1 and Dppa5a,

were still among the significantly accumulated genes in mES.
These results lead to the conclusion that the spike-in normaliza-

tion yields accurate quantitation and sensible statistical tests. For
example, if a mononuclear-cell A contained 100 000 transcripts, a

mononuclear-cell B contained 400 000 transcripts and a gene ex-
pressed 100 transcripts in both cells, the proposed method would
avoid to detect it as differentially expressed. We consider that as a

valid interpretation, as there was no change of the transcript count
per nucleus between those two cells. Instead, there must have been
(many) other genes that were overexpressed in cell B.

4 IMPLEMENTATION

The proof-of-concept was implemented in R (version 3.0) with the
samr package (version 2.0). Presently, users need to install this

package by R CMD install with a downloaded file from
https://github.com/shka/R-SAMstrt/archive/0.99.0.tar.gz followed
by installation of samr. However, this package will be in the future
bioconductor releases (submitted), and the bug-fix and new fea-

tures will be released at github and bioconductor. This package is
released under the GNU Lesser General Public License (LGPL)
version 3. Although the help documents of the package contain

basic usages, Supplementary Data file of this article includes more
concrete sample codes and the input data for Figure 1D and F.
It is necessary to prepare a SAMseq-compatible feature matrix

as input, and the matrix must contain several rows beginning
with ‘RNA_SPIKE_’ (e.g. RNA_SPIKE_1). Those are read
counts, which aligned to the spike-in sequences. Therefore,

users can apply this package to any RNA-seq libraries using
not only 8 ArrayControl spike-in molecules but also, for ex-
ample, 92 ERCC spike-ins.
This implementation contains two functions; one is a statistical

test for differential expression, and the other one is calculation of
the normalized values. Loading of the SAMstrt package
[library(SAMstrt)] overwrites the sequencing-depth estima-

tion of SAMseq for the spike-in normalization. Therefore, users
can use all problem types (e.g. comparisons of more than two
groups, or paired comparison of two groups) and the other op-

timization parameters also for the spike-in-based statistical tests
via function SAMseq after loading of the SAMstrt package.
SAMstrt.normalization calculates the spike-in-based nor-

malized values with conversion to estimated transcripts/sample
values based on the initial concentration of spike-in RNAs.
Those estimations would be transcripts/cell in single-cell experi-
ments and would be transcripts/1 ng-totalRNA in case of 1-ng

experiment; however, users should count number of cells before

RNA extraction for the latter case. This function would be useful
for visualization of the expression changes, or the other type

of statistics, e.g. principal component analysis. However, this
package does not normalize mRNA length bias (neither does
SAMseq), as theoretically STRT synthesizes only one first-

strand cDNA from one poly(A)þ RNA (Islam et al., 2012),
whereas full-length RNA-seq expects several fragmented cDNAs

from one RNA molecule with the number of fragment correlating
to the length of the original RNAmolecule. Moreover, neither this

package nor the original SAMseq normalizes GC-content bias of
the sequencing templates. Therefore, additional experimental (e.g.

incorporation of unique molecular identifiers into the first-strand
cDNAs before amplification, Kivioja et al., 2012) or mathematical

normalization before the spike-in-based normalization would
improve accuracy of the estimation and the statistical tests.

In conclusion, this proof-of-concept package SAMstrt would
be applicable to user’s own results by STRT and other sequen-

cing-based transcriptome profiling methods, including usual
RNA-seq, with spike-in control molecules. This package with
highly multiplexed library preparation enables flexible experi-

mental designs and more accurate interpretations of differential
expression, especially to reveal complex behaviors between many

cells at single-cell resolution.
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